login
A293386
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} 1/(1 + Sum_{j=1..k} j*x^(j*i))^2.
1
1, 1, 0, 1, -2, 0, 1, -2, 1, 0, 1, -2, -3, -2, 0, 1, -2, -3, 10, 4, 0, 1, -2, -3, 4, -4, -4, 0, 1, -2, -3, 4, 14, -20, 5, 0, 1, -2, -3, 4, 6, -8, 41, -6, 0, 1, -2, -3, 4, 6, 16, -46, 2, 9, 0, 1, -2, -3, 4, 6, 6, -30, 14, -111, -12, 0, 1, -2, -3, 4, 6, 6, 0, -58
OFFSET
0,5
LINKS
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
0, -2, -2, -2, -2, ...
0, 1, -3, -3, -3, ...
0, -2, 10, 4, 4, ...
0, 4, -4, 14, 6, ...
0, -4, -20, -8, 16, ...
CROSSREFS
Columns k=0..1 give A000007, A022597.
Rows n=0 gives A000012.
Main diagonal gives A252650.
Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^m: this sequence (m=-2), A290217 (m=-1), A290216 (m=1), A293377 (m=2).
Sequence in context: A275760 A293388 A268833 * A322522 A168121 A158948
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Oct 07 2017
STATUS
approved