This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293382 Decimal expansion of Sum_{n>=1} -(-1)^n * 2^n / (n * (2*3^n - 1)^n). 3
 3, 9, 3, 0, 9, 7, 4, 9, 0, 7, 0, 0, 0, 8, 0, 5, 7, 6, 5, 4, 5, 3, 5, 4, 6, 1, 9, 8, 7, 3, 1, 2, 0, 8, 4, 5, 0, 2, 1, 3, 4, 1, 5, 7, 5, 0, 0, 6, 7, 5, 5, 7, 1, 0, 3, 2, 1, 9, 9, 0, 3, 0, 8, 0, 3, 2, 4, 7, 8, 8, 6, 7, 5, 3, 5, 7, 0, 7, 5, 7, 7, 4, 9, 8, 8, 6, 6, 3, 5, 5, 7, 6, 2, 2, 2, 4, 2, 3, 6, 9, 9, 7, 9, 5, 6, 4, 8, 7, 5, 4, 4, 9, 9, 3, 7, 8, 5, 0, 5, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This constant plus A293381 equals log(2), due to the identity: Sum_{n=-oo..+oo, n<>0}  (x - y^n)^n / n = -log(1-x), here x = 1/2, y = 1/3. LINKS FORMULA Constant: Sum_{n>=1} -(-1)^n * 2^n / (n * (2*3^n - 1)^n). Constant: log(2) - Sum_{n>=1} (3^n - 2)^n / (n * 2^n * 3^(n^2)). EXAMPLE Constant t = 0.3930974907000805765453546198731208450213415750067557103219903... such that t = 2/(2*3-1) - 2^2/(2*(2*3^2-1)^2) + 2^3/(3*(2*3^3-1)^3) - 2^4/(4*(2*3^4-1)^4) + 2^5/(5*(2*3^5-1)^5) - 2^6/(6*(2*3^6-1)^6) + 2^7/(7*(2*3^7-1)^7) - 2^8/(8*(2*3^8-1)^8) +...+ -(-1)^n * 2^n / (n * (2*3^n - 1)^n) +... More explicitly, t = 2/5 - 4/(2*17^2) + 8/(3*53^3) - 16/(4*161^4) + 32/(5*485^5) - 64/(6*1457^6) + 128/(7*4373^7) - 256/(8*13121^8) + 512/(9*39365^9) - 1024/(10*118097^10) +... Also, log(2) - t = (3 - 2)/(1*2*3) + (3^2 - 2)^2/(2*2^2*3^4) + (3^3 - 2)^3/(3*2^3*3^9) + (3^4 - 2)^4/(4*2^4*3^16) + (3^5 - 2)^5/(5*2^5*3^25) + (3^6 - 2)^6/(6*2^6*3^36) + (3^7 - 2)^7/(7*2^7*3^49) +...+ (3^n - 2)^n / (n * 2^n * 3^(n^2)) +... PROG (PARI) {t = suminf(n=1, -1.*(-1)^n * 2^n / (n * (2*3^n - 1)^n) )} for(n=1, 120, print1(floor(10^n*t)%10, ", ")) CROSSREFS Cf. A002162, A293381, A292178, A292179, A293383, A293384. Sequence in context: A098323 A225460 A305274 * A016674 A264918 A091670 Adjacent sequences:  A293379 A293380 A293381 * A293383 A293384 A293385 KEYWORD nonn,cons AUTHOR Paul D. Hanna, Oct 13 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 08:08 EST 2019. Contains 329968 sequences. (Running on oeis4.)