login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of partitions of n where each part i is marked with a word of length i over a denary alphabet whose letters appear in alphabetical order and all ten letters occur at least once in the partition.
2

%I #8 Oct 11 2017 06:45:42

%S 8879558,507478240,16328012830,386564408490,7585143426265,

%T 129920818441752,2021599595359635,29144953777135120,

%U 396700415630121560,5147755142273696760,64343348623810658670,779040642478793472040,9192718895981030349425,106097174229823135572590

%N Number of partitions of n where each part i is marked with a word of length i over a denary alphabet whose letters appear in alphabetical order and all ten letters occur at least once in the partition.

%H Alois P. Heinz, <a href="/A293374/b293374.txt">Table of n, a(n) for n = 10..1000</a>

%F a(n) ~ c * 10^n, where c = 3.1513858636401513585013047835048959202713435... - _Vaclav Kotesovec_, Oct 11 2017

%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))

%p end:

%p a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(10):

%p seq(a(n), n=10..30);

%Y Column k=10 of A261719.

%K nonn

%O 10,1

%A _Alois P. Heinz_, Oct 07 2017