OFFSET
0,3
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = floor(r*2^n), where r = log 2.
a(n) = A293363(n) - 1.
From Greg Huber, Feb 13 2019: (Start)
a(n) = nearest integer to the integral dx/sin(x) from Pi/(2^(2^n)) to Pi/2.
a(n) = nearest integer to -log(tan(Pi/(2^(2^n+1)))) (follows from the integral formula). (End)
MATHEMATICA
PROG
(PARI) {a(n) = (log(2)*2^n)\1 }; \\ G. C. Greubel, Feb 13 2019
(Magma) [Floor(Log(2)*2^n): n in [0..40]]; // G. C. Greubel, Feb 13 2019
(Sage) [floor(log(2)*2^n) for n in range(40)] # G. C. Greubel, Feb 13 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 11 2017
STATUS
approved