login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Greatest integer k such that k/2^n < e^2.
3

%I #5 Oct 11 2017 09:16:03

%S 7,14,29,59,118,236,472,945,1891,3783,7566,15132,30265,60531,121062,

%T 242124,484249,968498,1936996,3873993,7747986,15495973,30991947,

%U 61983895,123967790,247935580,495871160,991742321,1983484643,3966969286,7933938573,15867877146

%N Greatest integer k such that k/2^n < e^2.

%H Clark Kimberling, <a href="/A293359/b293359.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = floor(r*2^n), where r = e^2.

%F a(n) = A293360(n) - 1.

%t z = 120; r = E^2;

%t Table[Floor[r*2^n], {n, 0, z}]; (* A293359 *)

%t Table[Ceiling[r*2^n], {n, 0, z}]; (* A293360 *)

%t Table[Round[r*2^n], {n, 0, z}]; (* A293361 *)

%Y Cf. A072334, A293360, A293361.

%K nonn,easy

%O 0,1

%A _Clark Kimberling_, Oct 10 2017