Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #23 Nov 23 2024 17:47:19
%S 2,20,40,48,68,176,212,304,328,944,1360,1712,1888,2320,2344,2864,4240,
%T 7120,7888,7984,8448,8960,11920,12032,14416,14592,15536,17492,20224,
%U 21520,23984,24208,24592,25904,26112,28160,29440,30464,34560,35920,36352,40528,41296
%N Even integers k such that lambda(sum of even divisors of k) = sum of odd divisors of k.
%C Or even integers k such that A002322(A146076(k)) = A000593(k).
%C Observations:
%C The primes a(n)/4: {5, 17, 53, 4373, 13121, ...} are of the form 2*3^m - 1, m > 0 (A079363).
%C The primes a(n)/8: {5, 41, 293, 4941257, ...} are of the form 6*7^m - 1, m = 0, 1, ... (primes in A198688).
%C The set of the primes {a(n)/16} = {3, 11, 19, 59, 107, 179, 499, 971, 1499, 1619, ...} contains the primes of the form 4*3^(2m+1) - 1 = {11, 107, 971, ...}, m = 0, 1, ...
%H Robert Israel, <a href="/A293356/b293356.txt">Table of n, a(n) for n = 1..738</a>
%e 68 is in the sequence because A002322(A146076(68)) = A002322(108) = 18 and A000593(68) = 18.
%p with(numtheory):
%p for n from 2 by 2 to 10^6 do:
%p x:=divisors(n):n1:=nops(x):s0:=0:s1:=0:
%p for k from 1 to n1 do:
%p if type(x[k],even)
%p then
%p s0:=s0+ x[k]:
%p else
%p s1:=s1+ x[k]:
%p fi:
%p od:
%p if s1=lambda(s0)
%p then
%p printf(`%d, `,n):
%p else
%p fi:
%p od:
%t fQ[n_] :=
%t Block[{d = Divisors@n},
%t CarmichaelLambda[Plus @@ Select[d, EvenQ]] ==
%t Plus @@ Select[d, OddQ]]; Select[2 Range@2000, fQ] (* _Robert G. Wilson v_, Oct 07 2017 *)
%o (PARI) is(n)=if(n%2, return(0)); my(s=valuation(n,2),d=sigma(n>>s)); lcm(znstar(d*(2^(s+1)-2))[2])==d \\ _Charles R Greathouse IV_, Dec 26 2017
%Y Cf. A000593, A000668, A002322, A146076, A281707.
%K nonn
%O 1,1
%A _Michel Lagneau_, Oct 07 2017
%E Edited by _Robert Israel_, Dec 28 2017