login
A293341
The integer k that minimizes |k/2^n - 1/e|.
4
0, 1, 1, 3, 6, 12, 24, 47, 94, 188, 377, 753, 1507, 3014, 6027, 12055, 24109, 48219, 96437, 192875, 385750, 771499, 1542998, 3085996, 6171993, 12343986, 24687971, 49375943, 98751886, 197503771, 395007542, 790015084, 1580030169, 3160060337, 6320120675
OFFSET
0,4
LINKS
FORMULA
a(n) = floor(1/2 + (1/e)*2^n).
a(n) = A293339(n) if (fractional part of (1/e)*2^n) < 1/2, else a(n) = A293340(n).
MATHEMATICA
z = 120; r = 1/E;
Table[Floor[r*2^n], {n, 0, z}]; (* A293339 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293340 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293341 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 10 2017
STATUS
approved