This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293292 Numbers with last digit less than 5 (in base 10). 2
 0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 70, 71, 72, 73, 74, 80, 81, 82, 83, 84, 90, 91, 92, 93, 94, 100, 101, 102, 103, 104, 110, 111, 112, 113, 114, 120, 121, 122, 123, 124, 130 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Equivalently, numbers k such that floor(k/5) = 2*floor(k/10). After 0, partial sums of A010122 starting from the 2nd term. The sequence differs from A007091 after a(25). Also numbers k such that floor(k/5) is even. - Peter Luschny, Oct 05 2017 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1). FORMULA G.f.: x^2*(1 + x + x^2 + x^3 + 6*x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)). a(n) = a(n-1) + a(n-5) - a(n-6). a(n) = (n-1) + 5*floor((n-1)/5) = 10*floor((n-1)/5) + ((n-1) mod 5). a(n) = A257145(n+2) - A239229(n-1). - R. J. Mathar, Oct 05 2017 MAPLE select(k -> type(floor(k/5), even), [\$0..130]); # Peter Luschny, Oct 05 2017 MATHEMATICA Table[n + 5 Floor[n/5], {n, 0, 70}] Reap[For[k = 0, k <= 130, k++, If[Floor[k/5] == 2*Floor[k/10], Sow[k]]]][[2, 1]] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 10}, 66] (* Jean-François Alcover, Oct 05 2017 *) PROG (MAGMA) [n: n in [0..130] | n mod 10 lt 5]; (MAGMA) [n: n in [0..130] | IsEven(Floor(n/5))]; (MAGMA) [n+5*Floor(n/5): n in [0..70]]; (PARI) concat(0, Vec(x^2*(1 + x + x^2 + x^3 + 6*x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^70))) \\ Colin Barker, Oct 05 2017 (PARI) select(k->floor(k/5) == 2*floor(k/10), vector(1000, k, k)) \\ Colin Barker, Oct 05 2017 (Python 3) [k for k in range(131) if (k//5) % 2 == 0] # Peter Luschny, Oct 05 2017 (Sage) [k for k in (0..130) if 2.divides(floor(k/5))] # Peter Luschny, Oct 05 2017 CROSSREFS Cf. A010122, A239229, A257145, A293481 (complement). Sequences of the type floor(n/d) = (10/d)*floor(n/10), where d is a factor of 10: A008592 (d=1), A197652 (d=2), this sequence (d=5), A001477 (d=10). Sequences of the type n + r*floor(n/r): A005843 (r=1), A042948 (r=2), A047240 (r=3), A047476 (r=4), this sequence (r=5). Sequence in context: A098892 A174139 A037325 * A037469 A007091 A058185 Adjacent sequences:  A293289 A293290 A293291 * A293293 A293294 A293295 KEYWORD nonn,base,easy AUTHOR Bruno Berselli, Oct 05 2017 EXTENSIONS Definition by David A. Corneth, Oct 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 17:59 EST 2019. Contains 329960 sequences. (Running on oeis4.)