The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293260 Number of adventitious quadrangles (convex, noncyclic, not kite) such that Pi/n is the largest number that divides all the angles. 0
 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 12, 0, 9, 0, 14, 0, 75, 0, 26, 0, 35, 0, 110, 0, 54, 0, 57, 0, 436 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,10 COMMENTS "All the angles" in the title means any angle formed by 3 vertices. There are 8 nonoverlapping angles in total. Consider convex quadrilateral ABCD. Let a,b,c,d,e,f,g,h be the angles ABD,DBC,BCA,ACD,CDB,BDA,DAC,CAB, respectively. A quadrangle is adventitious if all these angles are rational multiples of Pi. Cyclic quadrilaterals have properties a=d, b=g, c=f, e=h, thus making the adventitious case trivial. Kites have properties a=b, c=h, d=g, e=f, thus making the adventitious case trivial. Some properties:   1. b+c = f+g := x, d+e = h+a := y, x+y = Pi.   2. sin(a)sin(c)sin(e)sin(g) = sin(b)sin(d)sin(f)sin(h).   3. In an adventitious quadrangle, swapping angles (b,c) with (f,g) or (a,h) with (d,e) gives another adventitious quadrangle. From empirical observation, it seems that no adventitious quadrangles exist for odd numbers n. For example, take n=9: 180 degrees/9 = 20 degrees, and forming a quadrangle in which all angles are multiples of 20 degrees is impossible (proven by brute force). It seems to hold for all odd numbers n. Perhaps the most famous case is Langley's problem (where n=18). LINKS Kevin S. Brown's Mathpages, Adventitious Solutions Wikipedia, Langley’s Adventitious Angles EXAMPLE a(8) = 1 because there is one quadrangle where all angles are divisible by 180/8 = 22.5 degrees.   a=90, b=45, c=22.5, d=45, e=67.5, f=45, g=22.5, h=22.5. a(10) = 2 (180/10 = 18):    72  54  18  36  72  36  36  36   108  36  18  54  72  36  18  18 a(12) = 12 (180/12 = 18):    75  30  45  45  60  60  15  30    75  60  15  45  60  30  45  30    90  30  30  45  75  45  15  30    90  45  15  45  75  30  30  30    90  45  30  45  60  60  15  15    90  45  30  75  30  45  30  15    90  60  15  45  60  45  30  15   105  30  15  30 105  30  15  30   105  30  30  75  45  45  15  15   105  45  15  30  90  45  15  15   105  45  15  75  45  30  30  15   120  30  15  60  75  30  15  15 MATHEMATICA Remove[f]; f[n_Integer] := Do[       If[A == B < n/2 - C, Continue[]]; (* if A == B then C >= H *)       If[A == B == n/2 - C || C == D == n/2 - B, Continue[]]; (* remove kite *)       F = n/\[Pi] ArcTan[(Sin[d] Sin[a + b])/(Sin[a] Sin[c] Sin[e]) -            Cot[e], 1] /. Thread[{a, b, c, d, e} -> \[Pi]/n {A, B, C, D, E}];       F = Round[F, 10^-6];       If[A < F, Continue[]];       If[GCD[A, B, C, D, E, F] != 1, Continue[]];       If[A == E && B < F, Continue[]]; (* if A == E then B >= F* )       If[A == F && B < E, Continue[]]; (* if A == F then B >= E* )       {A, B, C, D, E, F, B + C - F, D + E - A} // Sow;       , {A, n/4 // Ceiling, n - 3}       , {B, Max[1, n - 3 A + 2], Min[A, n - A - 2]}(* B <= A and C < A and H < A *)       , {C, Max[1, n - 2 A - B + 1], Min[A - 1, n - A - B - 1]}(* C < A and H < A *)       , {D, n - A - B - C, A - 1}(* D < A and E <= A *)       , {E, {n - B - C - D}}       ] // Reap // Last // If[# == {}, {}, # // Last] &; Table[f[n] // Length, {n, 30}] (* 180/n f[n] /. n -> 18 // TableForm *) CROSSREFS Sequence in context: A274177 A075533 A053814 * A095238 A167345 A292496 Adjacent sequences:  A293257 A293258 A293259 * A293261 A293262 A293263 KEYWORD nonn,more AUTHOR Albert Lau, Oct 04 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 02:38 EDT 2021. Contains 343072 sequences. (Running on oeis4.)