

A293238


Decimal expansion of the escape probability for a random walk on the 3D bcc lattice.


4



7, 1, 7, 7, 7, 0, 0, 1, 1, 0, 4, 6, 1, 2, 9, 9, 9, 7, 8, 2, 1, 1, 9, 3, 2, 2, 3, 6, 6, 5, 7, 7, 9, 4, 2, 6, 6, 5, 7, 1, 2, 9, 8, 8, 9, 3, 3, 9, 9, 8, 4, 3, 7, 1, 9, 8, 9, 7, 6, 3, 6, 6, 3, 8, 7, 7, 2, 6, 9, 4, 2, 3, 1, 2, 5, 8, 4, 9, 8, 6, 6, 3, 7, 0, 1, 6, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The return probability equals unity minus this constant. The expected number of visits to the origin is the inverse of this constant, A091670.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000
Shunya Ishioka and Masahiro Koiwa, Random walks on diamond and hexagonal close packed lattices, Phil. Mag. A, 37 (1978), 517533.
G. L. Montet, Integral methods in the calculation of correlation factors in diffusion, Phys. Rev. B 7 (1973), 650662.
Index entries for sequences related to b.c.c. lattice
Index entries for sequences related to walks


FORMULA

Pi^2/(4*K(1/sqrt(2))^2), where K is the complete elliptic integral of the first kind.
Equals (4*Pi^3)/Gamma(1/4)^4.  G. C. Greubel, Oct 26 2018


EXAMPLE

0.7177700110461299978211932236657794...


MATHEMATICA

RealDigits[(4*Pi^3)/Gamma[1/4]^4, 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)


PROG

(PARI) default(realprecision, 100); (4*Pi^3)/gamma(1/4)^4 \\ G. C. Greubel, Oct 26 2018
(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); (4*Pi(R)^3)/Gamma(1/4)^4; // G. C. Greubel, Oct 26 2018


CROSSREFS

Cf. A091670, A242761, A293237.
Sequence in context: A295872 A010772 A199732 * A210708 A210529 A151785
Adjacent sequences: A293235 A293236 A293237 * A293239 A293240 A293241


KEYWORD

nonn,cons


AUTHOR

Andrey Zabolotskiy, Oct 03 2017


STATUS

approved



