login
Expansion of e.g.f. exp(x^4/(1 - x)).
4

%I #29 Jun 17 2024 10:48:41

%S 1,0,0,0,24,120,720,5040,60480,725760,9072000,119750400,1756339200,

%T 28021593600,479480601600,8717829120000,168254102016000,

%U 3438311804928000,74160828758016000,1682757222322176000,40061786401308672000,998402161605488640000

%N Expansion of e.g.f. exp(x^4/(1 - x)).

%H Seiichi Manyama, <a href="/A293050/b293050.txt">Table of n, a(n) for n = 0..444</a>

%F E.g.f.: Product_{i>3} exp(x^i).

%F From _Vaclav Kotesovec_, Sep 30 2017: (Start)

%F a(n) = 2*(n-1)*a(n-1) - (n-2)*(n-1)*a(n-2) + 4*(n-3)*(n-2)*(n-1)*a(n-4) - 3*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).

%F a(n) ~ n^(n-1/4) * exp(-7/2 + 2*sqrt(n) - n) / sqrt(2).

%F (End)

%F From _Seiichi Manyama_, Jun 17 2024: (Start)

%F a(n) = n! * Sum_{k=0..floor(n/4)} binomial(n-3*k-1,n-4*k)/k!.

%F a(0) = 1; a(n) = (n-1)! * Sum_{k=4..n} k * a(n-k)/(n-k)!. (End)

%p a:= proc(n) option remember; `if`(n=0, 1, add(

%p a(n-j)*binomial(n-1, j-1)*j!, j=4..n))

%p end:

%p seq(a(n), n=0..23); # _Alois P. Heinz_, Sep 29 2017

%t a[n_] := a[n] = If[n==0, 1, Sum[a[n-j] Binomial[n-1, j-1] j!, {j, 4, n}]];

%t a /@ Range[0, 23] (* _Jean-François Alcover_, Dec 21 2020, after _Alois P. Heinz_ *)

%o (PARI) x='x+O('x^66); Vec(serlaplace(exp(x^4/(1-x))))

%Y Column k=3 of A293053.

%Y E.g.f.: Product_{i>k} exp(x^i): A000262 (k=0), A052845 (k=1), A293049 (k=2), this sequence (k=3).

%Y Cf. A361545, A361576.

%K nonn

%O 0,5

%A _Seiichi Manyama_, Sep 29 2017