login
A292969
Expansion of e.g.f. exp(x^4 * exp(-x)).
3
1, 0, 0, 0, 24, -120, 360, -840, 21840, -365904, 3633840, -26619120, 239512680, -3943797000, 69258333144, -997361197560, 12707273822880, -179576670930720, 3215428464641760, -62865157116396384, 1167555972633639480, -20756362432008412440
OFFSET
0,5
LINKS
FORMULA
a(n) = n! * Sum_{k=0..floor(n/4)} (-k)^(n-4*k)/(k! * (n-4*k)!). - Seiichi Manyama, Jul 10 2022
MAPLE
S:= series(exp(x^4*exp(-x)), x, 51):
seq(coeff(S, x, j)*j!, j=0..50); # Robert Israel, Sep 28 2017
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(exp(x^4*exp(-x))))
(PARI) a(n) = n!*sum(k=0, n\4, (-k)^(n-4*k)/(k!*(n-4*k)!)); \\ Seiichi Manyama, Jul 10 2022
CROSSREFS
Column k=4 of A292973.
Cf. A292979.
Sequence in context: A217056 A099317 A293018 * A292979 A052760 A179720
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 27 2017
STATUS
approved