login
A292951
Expansion of e.g.f. exp(x^2 * (1 - exp(x))).
2
1, 0, 0, -6, -12, -20, 330, 2478, 11704, -15192, -751050, -7817150, -38408172, 151402524, 5793891922, 69046056870, 393083614320, -2517944476592, -98819987200146, -1384209703077750, -9376308260215220, 67288368700200900, 3186749671049174538
OFFSET
0,4
LINKS
FORMULA
From Seiichi Manyama, Jul 09 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * Stirling2(n-2*k,k)/(n-2*k)!.
a(0) = 1; a(n) = -(n-1)! * Sum_{k=3..n} k/(k-2)! * a(n-k)/(n-k)!. (End)
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[x^2 (1-Exp[x])], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Jul 16 2021 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(exp(x^2*(1-exp(x)))))
(PARI) a(n) = n!*sum(k=0, n\3, (-1)^k*stirling(n-2*k, k, 2)/(n-2*k)!); \\ Seiichi Manyama, Jul 09 2022
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-(i-1)!*sum(j=3, i, j/(j-2)!*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022
CROSSREFS
Column k=2 of A292894.
Cf. A240989.
Sequence in context: A144187 A303481 A247256 * A240989 A366564 A247212
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 27 2017
STATUS
approved