login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292942 a(n) = A292941(A163511(n)). 8
0, 1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 9, 8, 8, 8, 9, 16, 16, 16, 16, 16, 16, 18, 19, 16, 16, 16, 16, 16, 16, 18, 18, 32, 32, 32, 33, 32, 32, 32, 33, 32, 32, 32, 32, 36, 36, 38, 39, 32, 32, 32, 33, 32, 32, 32, 32, 32, 32, 32, 33, 36, 36, 36, 37, 64, 64, 64, 64, 64, 64, 66, 67, 64, 64, 64, 64, 64, 64, 66, 66, 64, 64, 64, 65, 64, 64, 64, 65, 72, 72, 72, 72, 76, 76 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Because A292941(n) = a(A243071(n)), the sequence works as a "masking function" where the 1-bits in a(n) (always a subset of the 1-bits in binary expansion of n) indicate which numbers are of the form 6k+1 in binary tree A163511 (or its mirror image tree A005940) on that trajectory which leads from the root of the tree to the node containing A163511(n).

The AND - XOR formula is just a restatement of the fact that J(-3|n) = J(-1|n)*J(3|n), as the Jacobi-symbol is multiplicative (also) with respect to its upper argument.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..8191

Index entries for sequences related to binary expansion of n

Index entries for sequences computed from indices in prime factorization

FORMULA

a(n) = A292941(A163511(n)).

a(n) = A292264(n) AND (A292254(n) XOR A292274(n)), where AND is bitwise-and (A004198) and XOR is bitwise-XOR (A003987). [See comments.]

For all n >= 0, a(n) + A292944(n) + A292946(n) = n.

PROG

(Scheme) (define (A292942 n) (A292941 (A163511 n)))

CROSSREFS

Cf. A005940, A163511, A292941.

Cf. also A292247, A292248, A292254, A292256, A292264, A292271, A292274, A292592, A292593, A292944, A292946 (for similarly constructed sequences).

Sequence in context: A053644 A279170 A292254 * A039593 A327649 A265529

Adjacent sequences:  A292939 A292940 A292941 * A292943 A292944 A292945

KEYWORD

nonn

AUTHOR

Antti Karttunen, Sep 28 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 26 14:08 EST 2020. Contains 331280 sequences. (Running on oeis4.)