This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292901 Triangle read by rows, a generalization of the Bernoulli numbers, the denominators for n>=0 and 0<=k<=n. 1
 1, 1, 2, 1, 2, 6, 1, 2, 3, 1, 1, 2, 12, 3, 30, 1, 2, 24, 9, 20, 1, 1, 2, 48, 54, 80, 10, 42, 1, 2, 96, 324, 8640, 200, 105, 1, 1, 2, 192, 1944, 3840, 36000, 525, 35, 30, 1, 2, 384, 11664, 1244160, 720000, 756000, 3675, 168, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS See comments in A292900. LINKS S. Fukuhara, N. Kawazumi and Y. Kuno, Generalized Kronecker formula for Bernoulli numbers and self-intersections of curves on a surface, arXiv:1505.04840 [math.NT], 2015. L. Kronecker, Ueber die Bernoullischen Zahlen, J. Reine Angew. Math. 94 (1883), 268-269. EXAMPLE Triangle starts: [0], 1 [1], 1, 2 [2], 1, 2,   6 [3], 1, 2,   3,     1 [4], 1, 2,  12,     3,      30 [5], 1, 2,  24,     9,      20,      1 [6], 1, 2,  48,    54,      80,     10,     42 [7], 1, 2,  96,   324,    8640,    200,    105,    1 [8], 1, 2, 192,  1944,    3840,  36000,    525,   35,  30 [9], 1, 2, 384, 11664, 1244160, 720000, 756000, 3675, 168, 1 MAPLE # Function B(n, k) in A292900. for n from 0 to 9 do seq(denom(B(n, k)), k=0..n) od; MATHEMATICA B[0, 0] = 1; B[n_, k_] := Sum[(-1)^(j-n)/(j+1) Binomial[k+1, j+1] Sum[i^n (j-i+1)^(k-n), {i, 0, j}], {j, 0, k}]; Table[B[n, k] // Denominator, {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 14 2019, from Maple *) CROSSREFS Cf. A292900 (numerators), T(n, n) = A027642(n). Sequence in context: A049404 A159885 A178803 * A083773 A129116 A096179 Adjacent sequences:  A292898 A292899 A292900 * A292902 A292903 A292904 KEYWORD nonn,tabl,frac,changed AUTHOR Peter Luschny, Oct 01 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 16 02:39 EST 2019. Contains 320140 sequences. (Running on oeis4.)