login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292901 Triangle read by rows, a generalization of the Bernoulli numbers, the denominators for n>=0 and 0<=k<=n. 1
1, 1, 2, 1, 2, 6, 1, 2, 3, 1, 1, 2, 12, 3, 30, 1, 2, 24, 9, 20, 1, 1, 2, 48, 54, 80, 10, 42, 1, 2, 96, 324, 8640, 200, 105, 1, 1, 2, 192, 1944, 3840, 36000, 525, 35, 30, 1, 2, 384, 11664, 1244160, 720000, 756000, 3675, 168, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

See comments in A292900.

LINKS

Table of n, a(n) for n=0..54.

S. Fukuhara, N. Kawazumi and Y. Kuno, Generalized Kronecker formula for Bernoulli numbers and self-intersections of curves on a surface, arXiv:1505.04840 [math.NT], 2015.

L. Kronecker, Ueber die Bernoullischen Zahlen, J. Reine Angew. Math. 94 (1883), 268-269.

EXAMPLE

Triangle starts:

[0], 1

[1], 1, 2

[2], 1, 2,   6

[3], 1, 2,   3,     1

[4], 1, 2,  12,     3,      30

[5], 1, 2,  24,     9,      20,      1

[6], 1, 2,  48,    54,      80,     10,     42

[7], 1, 2,  96,   324,    8640,    200,    105,    1

[8], 1, 2, 192,  1944,    3840,  36000,    525,   35,  30

[9], 1, 2, 384, 11664, 1244160, 720000, 756000, 3675, 168, 1

MAPLE

# Function B(n, k) in A292900.

for n from 0 to 9 do seq(denom(B(n, k)), k=0..n) od;

MATHEMATICA

B[0, 0] = 1; B[n_, k_] := Sum[(-1)^(j-n)/(j+1) Binomial[k+1, j+1] Sum[i^n (j-i+1)^(k-n), {i, 0, j}], {j, 0, k}]; Table[B[n, k] // Denominator, {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Feb 14 2019, from Maple *)

CROSSREFS

Cf. A292900 (numerators), T(n, n) = A027642(n).

Sequence in context: A049404 A159885 A178803 * A083773 A129116 A096179

Adjacent sequences:  A292898 A292899 A292900 * A292902 A292903 A292904

KEYWORD

nonn,tabl,frac,changed

AUTHOR

Peter Luschny, Oct 01 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 02:39 EST 2019. Contains 320140 sequences. (Running on oeis4.)