login
A292854
Expansion of 1/(1 + x + x/(1 + x^2 + x^2/(1 + x^3 + x^3/(1 + x^4 + x^4/(1 + ...))))), a continued fraction.
1
1, -2, 4, -6, 8, -12, 18, -24, 32, -44, 58, -76, 100, -128, 164, -210, 264, -332, 416, -516, 640, -790, 968, -1184, 1444, -1752, 2120, -2560, 3078, -3692, 4420, -5272, 6276, -7456, 8832, -10444, 12326, -14512, 17056, -20012, 23432, -27392, 31972, -37248, 43332, -50338, 58380, -67616, 78208, -90328, 104196
OFFSET
0,2
MATHEMATICA
nmax = 50; CoefficientList[Series[1/(1 + x + ContinuedFractionK[x^k, 1 + x^(k + 1), {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
Cf. A088354.
Sequence in context: A079212 A354768 A141452 * A330813 A015897 A240211
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 25 2017
STATUS
approved