login
Number of sets of nonempty words with a total of n letters over 5-ary alphabet.
3

%I #10 Dec 30 2020 08:22:33

%S 1,5,35,260,1805,12376,83175,550775,3600400,23276175,149012380,

%T 945726575,5955676150,37243117575,231412658225,1429522303905,

%U 8783382129825,53700395135475,326809026132350,1980383108328950,11952682268739660,71870696616619250,430632502970026125

%N Number of sets of nonempty words with a total of n letters over 5-ary alphabet.

%H Alois P. Heinz, <a href="/A292839/b292839.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: Product_{j>=1} (1+x^j)^(5^j).

%F a(n) ~ 5^n * exp(2*sqrt(n) - 1/2 - c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} (-1)^m/(m*(5^(m-1)-1)) = 0.112852293193143374268678097722831649456... - _Vaclav Kotesovec_, Sep 28 2017

%p h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(h(n-i*j, i-1)*binomial(5^i, j), j=0..n/i)))

%p end:

%p a:= n-> h(n$2):

%p seq(a(n), n=0..30);

%t h[n_, i_] := h[n, i] = If[n == 0, 1, If[i < 1, 0,

%t Sum[h[n - i j, i - 1] Binomial[5^i, j], {j, 0, n/i}]]];

%t a[n_] := h[n, n];

%t a /@ Range[0, 30] (* _Jean-François Alcover_, Dec 30 2020, after _Alois P. Heinz_ *)

%Y Column k=5 of A292804.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Sep 24 2017