login
A292800
Expansion of 1/(1 - x - x^3/(1 - x^5 - x^7/(1 - x^9 - x^11/(1 - x^13 - x^15/(1 - ...))))), a continued fraction.
2
1, 1, 1, 2, 3, 4, 6, 9, 14, 21, 32, 49, 74, 113, 172, 262, 399, 607, 925, 1409, 2146, 3269, 4979, 7584, 11552, 17596, 26803, 40826, 62187, 94725, 144287, 219782, 334776, 509939, 776752, 1183167, 1802230, 2745201, 4181558, 6369454, 9702111, 14778499, 22510979, 34289286, 52230301, 79558503
OFFSET
0,4
LINKS
FORMULA
a(n) ~ c * d^n, where d = 1.523225094265657459818421502249017511338863636291677936060889201502867407829... and c = 0.47457266943464547141454496057039844482970984208404015222172896259335... - Vaclav Kotesovec, Sep 24 2017
MATHEMATICA
nmax = 45; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-x^(4 k - 1), 1 - x^(4 k + 1), {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A355910 A143951 A328262 * A214041 A058355 A179041
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 23 2017
STATUS
approved