%I #5 Sep 22 2017 11:11:39
%S 1,1,4,14,67,343,2151,14900,119259,1055520,6837054,49975756,358031350,
%T 2673108092,20399335633,161247005007,1321885836686,10814140769210,
%U 93349395210404,726371063425227,5939975798740967,48195816632614079,396235068140514442
%N Number of multisets of nonempty words with a total of n letters over 9-ary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
%H Alois P. Heinz, <a href="/A292724/b292724.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: Product_{j>=1} 1/(1-x^j)^A226879(j).
%F Euler transform of A226879.
%p b:= proc(n, i, t) option remember; `if`(t=1, 1/n!,
%p add(b(n-j, j, t-1)/j!, j=i..n/t))
%p end:
%p a:= proc(n) option remember; `if`(n=0, 1, add(add(d*d!*
%p b(d, 0, 9), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..35);
%Y Column k=9 of A292712.
%Y Cf. A226879, A226873.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Sep 21 2017