login
A292715
Initial member of 8 consecutive primes a, b, c, d, e, f, g, h such that (a + h) = (b + g), (c + g) = (d + f), (a + f) = (b + e) and (a + g) = (b + f).
4
6337, 14717, 77521, 83401, 130643, 344231, 357653, 380377, 496453, 505067, 587101, 593473, 970457, 1130251, 1515691, 1694191, 1936741, 2689997, 2773007, 2811163, 3665371, 3678887, 3713993, 3976361, 4024687, 4181579, 4629461, 4801673, 5438569, 5882197, 6016811
OFFSET
1,1
COMMENTS
The equations reduce to b-a = d-c = f-e = g-f = h-g, i.e. gap number 1, 3, 5, 6, 7 are equal. - Jens Kruse Andersen, Oct 14 2017
LINKS
EXAMPLE
6337 is a term because it is the first of 8 consecutive primes {6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379} = {a, b, c, d, e, f, g, h}; and (a + h) = (b + g), (c + g) = (d + f), (a + f) = (b + e) and (a + g) = (b + f).
MAPLE
A292715:= proc(n)local a, b, c, d, e, f, g, h; a:=ithprime(n); b:=ithprime(n + 1); c:=ithprime(n + 2); d:=ithprime(n + 3); e:=ithprime(n + 4); f:=ithprime(n + 5); g:=ithprime(n + 6); h:=ithprime(n + 7); if (a + h) = (b + g) and (c + g) = (d + f) and (a + f) = (b + e) and (a + g)=(b + f) then RETURN (a); fi; end: seq(A292715(n), n=1..1000000);
MATHEMATICA
Select[Partition[Prime@ Range[10^6], 8, 1], Function[{a, b, c, d, e, f, g, h}, And[(a + h) == (b + g), (c + g) == (d + f), (a + f) == (b + e), (a + g) == (b + f)]] @@ # &][[All, 1]] (* Michael De Vlieger, Sep 21 2017 *)
Select[Partition[Prime[Range[420000]], 8, 1], Length[Union[Drop[Drop[ Differences[ #], {4}], {2}]]]==1&][[All, 1]](* Harvey P. Dale, Nov 03 2017 *)
CROSSREFS
Sequence in context: A251024 A213993 A252268 * A296777 A292743 A117050
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Sep 21 2017
STATUS
approved