login
A292713
Number of multisets of nonempty words with a total of n letters over n-ary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
5
1, 1, 4, 14, 67, 343, 2151, 14900, 119259, 1055520, 10465854, 113479756, 1350508150, 17373376892, 241576630993, 3596468789967, 57232276979726, 967517444008250, 17339617861447844, 328037083000497867, 6537494747743375847, 136820214583596515519
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] Product_{j=1..n} 1/(1-x^j)^A226873(j,n).
a(n) = A292712(n,n).
a(n) ~ c * n!, where c = A247551 = 2.5294774720791526... - Vaclav Kotesovec, Oct 05 2017
EXAMPLE
a(0) = 1: {}.
a(1) = 1: {a}.
a(2) = 4: {aa}, {ab}, {ba}, {a,a}.
a(3) = 14: {aaa}, {aab}, {aba}, {baa}, {abc}, {acb}, {bac}, {bca}, {cab}, {cba}, {aa,a}, {ab,a}, {ba,a}, {a,a,a}.
MAPLE
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!,
add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
A:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*
g(d, k), d=numtheory[divisors](j))*A(n-j, k), j=1..n)/n)
end:
a:= n-> A(n$2):
seq(a(n), n=0..25);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]];
g[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]];
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d*g[d, k], {d, Divisors[j]}]* A[n - j, k], {j, 1, n}]/n];
a[n_] := A[n, n];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 19 2020, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A292712.
Row sums of A319495.
Sequence in context: A292723 A292724 A292725 * A007025 A221538 A301511
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 21 2017
STATUS
approved