login
Rank of (4+r)*n when all the numbers (4-r)*j and (4+r)*k, where r = sqrt(2), j>=1, k>=1, are jointly ranked.
2

%I #4 Sep 26 2017 20:27:23

%S 3,6,9,12,15,18,21,24,27,30,34,37,40,43,46,49,52,55,58,61,64,68,71,74,

%T 77,80,83,86,89,92,95,99,102,105,108,111,114,117,120,123,126,129,133,

%U 136,139,142,145,148,151,154,157,160,163,167,170,173,176,179,182

%N Rank of (4+r)*n when all the numbers (4-r)*j and (4+r)*k, where r = sqrt(2), j>=1, k>=1, are jointly ranked.

%H Clark Kimberling, <a href="/A292641/b292641.txt">Table of n, a(n) for n = 1..1000</a>

%t z = 120; r = 4 - Sqrt[2]; s = 4 + Sqrt[2];

%t Table[n + Floor[n*r/s], {n, 1, z}] (* A292640 *)

%t Table[n + Floor[n*s/r], {n, 1, z}] (* A292641 *)

%Y Cf. A292640 (complement).

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Sep 26 2017