login
Rank of (3-r)*n when all the numbers (3-r)*j and (3+r)*k, where r = sqrt(2), j>=1, k>=1, are jointly ranked.
3

%I #16 Sep 08 2022 08:46:19

%S 1,2,4,5,6,8,9,10,12,13,14,16,17,19,20,21,23,24,25,27,28,29,31,32,33,

%T 35,36,38,39,40,42,43,44,46,47,48,50,51,53,54,55,57,58,59,61,62,63,65,

%U 66,67,69,70,72,73,74,76,77,78,80,81,82,84,85,86,88,89

%N Rank of (3-r)*n when all the numbers (3-r)*j and (3+r)*k, where r = sqrt(2), j>=1, k>=1, are jointly ranked.

%C Starts to differ from A279607 at n=103. - _R. J. Mathar_, Oct 02 2017

%H Clark Kimberling, <a href="/A292636/b292636.txt">Table of n, a(n) for n = 1..1000</a>

%t z = 120; r = 3 - Sqrt[2]; s = 3 + Sqrt[2];

%t Table[n + Floor[n*r/s], {n, 1, z}] (* A292636 *)

%t Table[n + Floor[n*s/r], {n, 1, z}] (* A292637 *)

%o (PARI) vector(100,n, n + floor(n*(3-sqrt(2))/(3+sqrt(2)))) \\ _G. C. Greubel_, Aug 20 2018

%o (Magma) [n + Floor(n*(3-Sqrt(2))/(3+Sqrt(2))): n in [1..100]]; // _G. C. Greubel_, Aug 20 2018

%Y Cf. A292637 (complement).

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Sep 23 2017