login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292627 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)*BesselI(0,2*x). 12
1, 1, 0, 1, 1, 2, 1, 2, 3, 0, 1, 3, 6, 7, 6, 1, 4, 11, 20, 19, 0, 1, 5, 18, 45, 70, 51, 20, 1, 6, 27, 88, 195, 252, 141, 0, 1, 7, 38, 155, 454, 873, 924, 393, 70, 1, 8, 51, 252, 931, 2424, 3989, 3432, 1107, 0, 1, 9, 66, 385, 1734, 5775, 13236, 18483, 12870, 3139, 252, 1, 10, 83, 560, 2995, 12276, 36645, 73392, 86515, 48620, 8953, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

A(n,k) is the k-th binomial transform of A126869 evaluated at n.

LINKS

Seiichi Manyama, Antidiagonals n = 0..139, flattened

N. J. A. Sloane, Transforms

FORMULA

O.g.f. of column k: 1/sqrt( (1 - (k-2)*x)*(1 - (k+2)*x) ).

E.g.f. of column k: exp(k*x)*BesselI(0,2*x).

From Seiichi Manyama, May 01 2019: (Start)

A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + x^2)^n.

A(n,k) = Sum_{j=0..n} (k-2)^(n-j) * binomial(n,j) * binomial(2*j,j).

A(n,k) = Sum_{j=0..n} (k+2)^(n-j) * (-1)^j * binomial(n,j) * binomial(2*j,j).

n * A(n,k) = k * (2*n-1) * A(n-1,k) - (k^2-4) * (n-1) * A(n-2,k). (End)

A(n,k) = Sum_{j=0..floor(n/2)} k^(n-2*j) * binomial(n,2*j) * binomial(2*j,j). - Seiichi Manyama, May 04 2019

T(n,k) =  (1/Pi) * Integral_{x = -1..1} (k - 2 + 4*x^2)^n/sqrt(1 - x^2) dx  = (1/Pi) * Integral_{x = -1..1} (k + 2 - 4*x^2)^n/sqrt(1 - x^2) dx. - Peter Bala, Jan 27 2020

EXAMPLE

E.g.f. of column k: A_k(x) =  1 + k*x/1! + (k^2 + 2)*x^2/2! + (k^3 + 6*k)*x^3/3! + (k^4 + 12*k^2 + 6)*x^4/4! + (k^5 + 20*k^3 + 30*k)*x^5/5! + ...

Square array begins:

  1,   1,    1,    1,     1,     1,  ...

  0,   1,    2,    3,     4,     5,  ...

  2,   3,    6,   11,    18,    27,  ...

  0,   7,   20,   45,    88,   155,  ...

  6,  19,   70,  195,   454,   931,  ...

  0,  51,  252,  873,  2424,  5775,  ...

MATHEMATICA

Table[Function[k, n! SeriesCoefficient[Exp[k x] BesselI[0, 2 x], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Table[Function[k, SeriesCoefficient[1/Sqrt[(1 + 2 x - k x) (1 - 2 x - k x)], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

CROSSREFS

Columns k=0..7 give A126869, A002426, A000984, A026375, A081671, A098409, A098410, A104454.

Rows n=0..2 give A000012, A001477, A059100.

Main diagonal gives A186925.

Cf. A292628, A307847.

Sequence in context: A123590 A092872 A141455 * A113125 A088239 A130070

Adjacent sequences:  A292624 A292625 A292626 * A292628 A292629 A292630

KEYWORD

nonn,tabl

AUTHOR

Ilya Gutkovskiy, Sep 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 18:07 EST 2020. Contains 338769 sequences. (Running on oeis4.)