login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292622 Number A(n,k) of partitions of n with up to k distinct kinds of 1; square array A(n,k), n>=0, k>=0, read by antidiagonals. 16
1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 2, 1, 4, 4, 3, 3, 2, 1, 5, 7, 5, 5, 4, 4, 1, 6, 11, 9, 8, 7, 6, 4, 1, 7, 16, 16, 13, 12, 10, 8, 7, 1, 8, 22, 27, 22, 20, 17, 14, 11, 8, 1, 9, 29, 43, 38, 33, 29, 24, 19, 15, 12, 1, 10, 37, 65, 65, 55, 49, 41, 33, 26, 20, 14 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

For fixed k>=0, A(n,k) ~ Pi * 2^(k - 5/2) * exp(Pi*sqrt(2*n/3)) / (3 * n^(3/2)). - Vaclav Kotesovec, Oct 24 2018

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

EXAMPLE

A(3,4) =  9: 3, 21a, 21b, 21c, 21d, 1a1b1c, 1a1b1d, 1a1c1d, 1b1c1d.

A(4,3) =  8: 4, 31a, 31b, 31c, 22, 21a1b, 21a1c, 21b1c.

A(4,4) = 13: 4, 31a, 31b, 31c, 31d, 22, 21a1b, 21a1c, 21a1d, 21b1c, 21b1d, 21c1d, 1a1b1c1d.

Square array A(n,k) begins:

  1,  1,  1,  1,  1,  1,   1,   1,   1, ...

  0,  1,  2,  3,  4,  5,   6,   7,   8, ...

  1,  1,  2,  4,  7, 11,  16,  22,  29, ...

  1,  2,  3,  5,  9, 16,  27,  43,  65, ...

  2,  3,  5,  8, 13, 22,  38,  65, 108, ...

  2,  4,  7, 12, 20, 33,  55,  93, 158, ...

  4,  6, 10, 17, 29, 49,  82, 137, 230, ...

  4,  8, 14, 24, 41, 70, 119, 201, 338, ...

  7, 11, 19, 33, 57, 98, 168, 287, 488, ...

MAPLE

b:= proc(n, i, k) option remember; `if`(n=0 or i=1,

      binomial(k, n), `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k))

    end:

A:= (n, k)-> b(n$2, k):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, Binomial[k, n], If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]];

A[n_, k_] := b[n, n, k];

Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-Fran├žois Alcover, May 19 2018, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A002865, A027336, A320689, A320690, A320691, A320692, A320693, A320694, A320695, A320696, A320697.

Rows n=0-4 give: A000012, A001477, A000124(k-1) for k>0, A011826 for k>0.

Main diagonal gives A292507.

Cf. A292508, A292741, A292745.

Sequence in context: A304382 A304717 A110963 * A292869 A106348 A161092

Adjacent sequences:  A292619 A292620 A292621 * A292623 A292624 A292625

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Sep 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 20:44 EDT 2019. Contains 328315 sequences. (Running on oeis4.)