This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292523 Decimal encoding T(n,k) of the k-th non-averaging permutation of [n]; triangle T(n,k), n >= 0, k = 1..A003407(n), read by rows. 5
 0, 1, 12, 21, 132, 213, 231, 312, 1324, 1342, 2143, 2413, 2431, 3124, 3142, 3412, 4213, 4231, 15324, 15342, 21453, 24153, 24315, 24351, 24513, 31254, 31524, 31542, 35124, 35142, 35412, 42153, 42315, 42351, 42513, 45213, 51324, 51342, 153264, 153426, 153462 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A non-averaging permutation avoids any 3-term arithmetic progression. The encoding of the empty permutation () is 0. For positive n each element in the permutation is encoded using 1+floor(log_10(n)) = A055642(n) digits with leading 0's if necessary. Then all elements are concatenated. All terms are in increasing order. LINKS Alois P. Heinz, Rows n = 0..14, flattened Eric Weisstein's World of Mathematics, Nonaveraging Sequence Wikipedia, Arithmetic progression EXAMPLE Triangle T(n,k) begins: :            0; :            1; :           12, 21; :          132, 213, 231, 312; :         1324, 1342, 2143, 2413,  2431,    3124,  3142, 3412, 4213, 4231; :        15324, 15342, 21453, 24153,    ...,    42513, 45213, 51324, 51342; :       153264, 153426, 153462, 153624, ..., 624153, 624315, 624351, 624513; :      1532764, 1537264, 1537426,       ...,       7351462, 7351624, 7356124; :     15327648, 15327684, 15372648,     ...,     84627351, 84672315, 84672351; :    195327648, 195327684, 195372648,   ...,   915738462, 915783426, 915783462; :   1090503020710060408,                ...,               10020608090401050703; :  109050302110710060408,               ...,              1103070910010502060804; : 10905031107021006041208,              ...,             120408100206110307090105; MAPLE T:= proc(n) option remember; local b, l, c; b, l, c:=       proc(s, p) local ok, i, j, k;         if nops(s) = 0 then l:= [l[], parse(p)]       else for j in s do ok, i, k:= true, j-1, j+1;              while ok and i>0 and k<=n do ok, i, k:=                not i in s xor k in s, i-1, k+1 od;              `if`(ok, b(s minus {j}, cat(p, 0\$(c-length(j)), j)), 0)            od         fi       end, [], length(n); b({\$1..n}, "0"): sort(l)[]     end: seq(T(n), n=0..6); CROSSREFS Cf. A003407, A030299, A055642, A088370. Sequence in context: A268532 A260275 A001292 * A162391 A114015 A065439 Adjacent sequences:  A292520 A292521 A292522 * A292524 A292525 A292526 KEYWORD nonn,tabf,base AUTHOR Alois P. Heinz, Dec 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 26 08:16 EDT 2019. Contains 322472 sequences. (Running on oeis4.)