Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 26 2018 18:32:50
%S 1,-1,0,-1,1,0,-1,1,0,1,-2,1,0,1,-1,-1,2,-1,1,-2,1,0,0,0,0,1,-1,1,-3,
%T 2,-1,2,-1,0,1,-1,0,-2,3,-1,1,-2,1,1,-2,0,0,2,0,-1,0,2,-2,-1,-1,1,2,
%U -1,1,-1,1,-2,1,-2,3,1,-2,0,-2,3,-1,-1,0,3,-1,0,-2,1,0,-3,2,2,1,-1,-1,0,0,-1,0,2,-1
%N Expansion of Product_{k>=1} (1 - x^(k*(k+1)/2)).
%C Convolution inverse of A007294.
%C The difference between the number of partitions of n into an even number of distinct triangular numbers and the number of partitions of n into an odd number of distinct triangular numbers.
%C Euler transform of {-1 if n is a triangular number else 0, n > 0} = -A010054. - _Gus Wiseman_, Oct 22 2018
%H Seiichi Manyama, <a href="/A292518/b292518.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Par#part">Index entries for related partition-counting sequences</a>
%F G.f.: Product_{k>=1} (1 - x^(k*(k+1)/2)).
%t nmax = 90; CoefficientList[Series[Product[1 - x^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
%Y Product_{k>=1} (1 - x^(k*((m-2)*k-(m-4))/2)): this sequence (m=3), A276516 (m=4), A305355 (m=5).
%Y Cf. A007294, A010054, A024940, A280366, A320767, A320784.
%K sign
%O 0,11
%A _Ilya Gutkovskiy_, Sep 18 2017