login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292489 p-INVERT of the odd positive integers, where p(S) = 1 - S - 6 S^2. 1
1, 10, 60, 312, 1656, 8928, 48024, 257904, 1385352, 7442784, 39985272, 214811280, 1154025000, 6199749504, 33306803352, 178933509936, 961281138888, 5164272731808, 27743925989304, 149048175357648, 800728728609384, 4301739993919680, 23110157427289560 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A292480 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5, -1, 15, 6)

FORMULA

G.f.: -(((1 + x) (1 + 4 x + 7 x^2))/((-1 + 5 x + 2 x^2) (1 + 3 x^2))).

a(n) = 5*a(n-1) - a(n-2) + 16*a(n-3) + 6*a(n-4)  for n >= 5.

MATHEMATICA

z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 6 s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292489 *)

PROG

(PARI) x='x+O('x^99); Vec(((1+x)*(1+4*x+7*x^2))/((1-5*x-2*x^2)*(1+3*x^2))) \\ Altug Alkan, Oct 03 2017

CROSSREFS

Cf. A005408, A292480.

Sequence in context: A003472 A112502 A293081 * A083585 A250575 A155633

Adjacent sequences:  A292486 A292487 A292488 * A292490 A292491 A292492

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Oct 03 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 20:17 EST 2019. Contains 320328 sequences. (Running on oeis4.)