login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292480 p-INVERT of the odd positive integers, where p(S) = 1 - S^2. 17
0, 1, 6, 20, 56, 160, 480, 1456, 4384, 13136, 39360, 118064, 354272, 1062928, 3188736, 9565936, 28697632, 86093264, 258280512, 774841520, 2324523104, 6973567888, 20920705152, 62762119792, 188286360736, 564859074896, 1694577214656, 5083731648560 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

In the following guide to p-INVERT sequences using s = (1,3,5,7,9,...) = A005408, in some cases t(1,3,5,7,9,...) is a shifted (or differently indexed) version of the cited sequence:

p(S) *********** t(1,3,5,7,9,...)

1 - S               A003946

1 - S^2             A292480

1 - S^3             (not yet in OEIS)

(1 - S)^2           (not yet in OEIS)

(1 - S)^3           (not yet in OEIS)

1 - S - S^2         A289786

1 + S - S^2         A289484

1 - S - 2 S^2       A289785

1 - S - 3 S^2       A289786

1 - S - 4 S^2       A289787

1 - S - 5 S^2       A289788

1 - S - 6 S^2       A289789

1 - S - 7 S^2       A289790

1 + S - 2 S^2       A289791

1 - S + S^2 - S^3   A289792

1 + S - 3 S^2       A289793

1 - S - S^2 - S^3   A289794

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-5,6)

FORMULA

G.f.: x*(1 + x)^2/((1 - 3*x)*(1 - x + 2*x^2)).

a(n) = 4*a(n-1) - 5*a(n-2) + 6*a(n-3) for n >= 5.

EXAMPLE

s = (1,3,5,7,9,...), S(x) = x + 3 x^2 + 5 x^3 + 7 x^4 + ...,

p(S(x)) = 1 - ( x + 3 x^2 + 5 x^3 + 7 x^4 + ...)^2,

1/p(S(x)) = 1 + x^2 + 6 x^3 + 20 x^4 + 56 x^5 + ...

T(x) = (-1 + 1/p(S(x)))/x = x + 6 x^2 + 20 x^3 + 56 x^4 + ...

t(s) = (0,1,2,20,56,...).

MATHEMATICA

z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292480 *)

Join[{0}, LinearRecurrence[{4, -5, 6}, {1, 6, 20}, 30]] (* Vincenzo Librandi, Oct 03 2017 *)

PROG

(MAGMA) I:=[0, 1, 6, 20]; [n le 4 select I[n] else 4*Self(n-1)- 5*Self(n-2)+6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 03 2017

CROSSREFS

Cf. A005408, A292479.

Sequence in context: A014480 A048778 A048611 * A200528 A127982 A109164

Adjacent sequences:  A292477 A292478 A292479 * A292481 A292482 A292483

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Oct 02 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 18:12 EST 2019. Contains 329847 sequences. (Running on oeis4.)