login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292479 p-INVERT of the positive squares, where p(S) = 1 - S^2. 8
0, 1, 8, 35, 120, 392, 1336, 4725, 16792, 59191, 207536, 727440, 2553264, 8968569, 31502248, 110627195, 388451624, 1364010648, 4789766120, 16819647565, 59063332152, 207403715119, 728306773600, 2557481457440, 8980717116000, 31536219644721, 110740934436168 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

In the following guide to p-INVERT sequences using s = (1,4,9,16,...) = A000290, in some cases t(1,4,9,16,...) is a shifted (or differently indexed) version of the cited sequence:

** p(S) ********** t(1, 4, 9, 16,...)

1 - S                A033453

1 - S^2              A292479

1 - S^3              (not yet in OEIS)

(1 - S)^2            (not yet in OEIS)

1 - S - S^2          A289779

1 + S - S^2          (not yet in OEIS)

1 + S - 2 S^2        (not yet in OEIS)

1 + S - 3 S^2        (not yet in OEIS)

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (6,-14,22,-14,6,-1)

FORMULA

G.f.: x*(1 + x)^2/((-1 + 2*x - 4*x^2 + x^3)*(-1 + 4*x - 2*x^2 + x^3)).

a(n) = 6*a(n-1) - 14*a(n-2) + 22*a(n-3) - 14*a(n-4) + 6*a(n-5) - a(n-6) for n >= 7.

EXAMPLE

s = (1,4,9,16,25,...), S(x) = x + 4 x^2 + 9 x^3 + 16 x^4 + ...,

p(S(x)) = 1 - (x + 4 x^2 + 9 x^3 + 16 x^4 + ...)^2,

1/p(S(x)) = 1 + x^2 + 8*x^3 + 35*x^4 + 120*x^5 + ...

T(x) = (-1 + 1/p(S(x)))/x = x + 8 x^2 + 35 x^3 + 120 x^4 + ...

t(s) = (0, 1, 8, 35, 120, ...).

MATHEMATICA

z = 60; s = x (x + 1)/(1 - x)^3; p = 1 - s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000290 *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292479 *)

LinearRecurrence[{6, -14, 22, -14, 6, -1}, {0, 1, 8, 35, 120, 392}, 30] (* Vincenzo Librandi, Oct 03 2017 *)

PROG

(MAGMA) I:=[0, 1, 8, 35, 120, 392]; [n le 6 select I[n] else 6*Self(n-1)-14*Self(n-2)+22*Self(n-3)-14*Self(n-4)+6*Self(n-5)- Self(n-6): n in [1..30]]; // Vincenzo Librandi, Oct 03 2017

CROSSREFS

Cf. A000290, A292480.

Sequence in context: A229403 A059824 A248882 * A301881 A094616 A318020

Adjacent sequences:  A292476 A292477 A292478 * A292480 A292481 A292482

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Oct 02 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 01:16 EST 2020. Contains 332195 sequences. (Running on oeis4.)