login
A292472
Generalized heptagonal numbers that are also Fibonacci numbers.
0
0, 1, 13, 34, 55
OFFSET
1,3
COMMENTS
Intersection of A000045 and A085787.
Exactly five such numbers exist (cf. Srinivasa Rao, 2003).
All (generalized) g-gonal numbers in Fibonacci sequences up to g=20 have been determined (cf. Tengely, 2009). - Tomohiro Yamada, Sep 26 2017
LINKS
B. Srinivasa Rao, Heptagonal Numbers in Fibonacci Sequence and Diophantine Equations 4x^2 = 5y^2(5y-3)^2+-16, The Fibonacci Quarterly, Vol. 41, No. 5 (2003), 414-420.
Szabolcs Tengely, Finding g-gonal numbers in recurrence sequences, Fibonacci Quarterly, Vol.46/47, No. 3 (2009), 235-240.
MATHEMATICA
Intersection[Array[(# (# + 1)/2 - 1)/5 &, 50, 0], Array[Fibonacci, 50, 0]] (* Michael De Vlieger, Sep 18 2017 *)
PROG
(PARI) a085787(n) = (5*(-n\2)^2 - (-n\2)*3*(-1)^n) / 2
is_a000045(n) = my(x=0); while(fibonacci(x) < n, x++); if(fibonacci(x)==n, return(1)); 0
for(n=0, 60, if(is_a000045(a085787(n)), print1(a085787(n), ", ")))
CROSSREFS
Cf. A292850 (Generalized heptagonal Lucas numbers).
Sequence in context: A245170 A134864 A093100 * A081271 A190458 A180673
KEYWORD
nonn,easy,fini,full
AUTHOR
Felix Fröhlich, Sep 17 2017
STATUS
approved