login
A292465
a(n) = n*F(n)*F(n+1), where F = A000045.
1
0, 1, 4, 18, 60, 200, 624, 1911, 5712, 16830, 48950, 140976, 402624, 1141933, 3219580, 9031050, 25219824, 70153016, 194466672, 537404835, 1480993800, 4071156726, 11165970794, 30561658848, 83490220800, 227687745625, 619938027124, 1685442626946, 4575973716132
OFFSET
0,3
COMMENTS
Inequality proposed by Bătineţu-Giurgiu and Stanciu (see References): Let {x(n)}_{n>=1} be a sequence of real numbers. Prove that 2*(Sum_{k=1..n} F(k)*sin(x(k)))*(Sum_{k=1..n} F(k)*cos(x(k))) <= n*F(n)*F(n+1).
LINKS
D. M. Bătineţu-Giurgiu and N. Stanciu, Problem B-1179, The Fibonacci Quarterly, Volume 53, Number 4 (November 2015), p. 366.
FORMULA
G.f.: x*(1 - 2*x + 3*x^2 - 6*x^3 + 6*x^4 - 2*x^5)/((1 - x)^2*(1 + x)^2*(1 - 3*x + x^2)^2).
MAPLE
with(combinat, fibonacci): A292465:=seq(n*fibonacci(n)*fibonacci(n+1), n=0..10^2); # Muniru A Asiru, Sep 26 2017
MATHEMATICA
Table[n Fibonacci[n] Fibonacci[n+1], {n, 0, 30}]
PROG
(Magma) [n*Fibonacci(n)*Fibonacci(n+1): n in [0..35]];
(PARI) a(n) = n*fibonacci(n)*fibonacci(n+1); \\ Altug Alkan, Sep 17 2017
(GAP)
A292465:=List([0..10^3], n->n*Fibonacci(n)*Fibonacci(n+1)); # Muniru A Asiru, Sep 26 2017
CROSSREFS
Sequence in context: A278406 A192069 A073373 * A227162 A057414 A165910
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 17 2017
STATUS
approved