login
A292460
Expansion of (1 - x - x^2 - sqrt((1 - x - x^2)^2 - 4*x^3))/(2*x^3) in powers of x.
3
1, 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, 2283, 5373, 12735, 30372, 72832, 175502, 424748, 1032004, 2516347, 6155441, 15101701, 37150472, 91618049, 226460893, 560954047, 1392251012, 3461824644, 8622571758, 21511212261, 53745962199, 134474581374
OFFSET
0,3
COMMENTS
Number of U_{k}D-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths. - Sergey Kirgizov, Apr 08 2018
LINKS
Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
FORMULA
G.f.: 1/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(... (continued fraction).
a(n) = A004148(n+1).
a(n) ~ 5^(1/4) * phi^(2*n + 4) / (2*sqrt(Pi)*n^(3/2)), where phi is the golden ratio (1+sqrt(5))/2. - Vaclav Kotesovec, Sep 17 2017
D-finite with recurrence: (n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Jan 23 2020
a(0) = a(1) = 1; a(n) = a(n-1) + a(n-2) + Sum_{k=0..n-3} a(k) * a(n-k-3). - Ilya Gutkovskiy, Nov 09 2021
MATHEMATICA
CoefficientList[Series[(1-x-x^2 -Sqrt[(1-x-x^2)^2 -4*x^3])/(2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Aug 13 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x-x^2 -sqrt((1-x-x^2)^2 -4*x^3))/(2*x^3)) \\ G. C. Greubel, Aug 13 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2 -Sqrt((1-x-x^2)^2 -4*x^3))/(2*x^3))); // G. C. Greubel, Aug 13 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 16 2017
STATUS
approved