login
A292395
a(n) = A292394(n)/n^2 for n>=1.
2
1, 1, 7, 135, 5521, 418711, 52505552, 10034306147, 2768027299909, 1055389479690007, 536926409666609040, 354534107755578318094, 297045945287473702734584, 309828094123717787726306772, 395818917891236220205710173248, 610789854576714911900411852031035, 1124694852500570258500087576570621947, 2445082865412664444306698277861664761891
OFFSET
1,3
COMMENTS
It is conjectured that this sequence consists entirely of integers.
The g.f. G(x) of A292394 satisfies: [x^n] G( x/G(x)^(n^2) ) = 0 for n>1.
LINKS
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[#A] = -Vec(subst(Ser(A), x, x/Ser(A)^((#A-1)^2)))[#A]); A[n+1]/n^2}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A292394.
Sequence in context: A001533 A143181 A183478 * A081793 A296595 A368630
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 15 2017
STATUS
approved