login
A292389
a(n) = SumXOR_{k=1..n} A292388(k) (where SumXOR is the analog of summation under the binary XOR operation).
3
2, 3, 7, 2, 5, 3, 11, 2, 13, 7, 11, 5, 23, 7, 19, 2, 17, 7, 31, 5, 37, 59, 31, 3, 37, 7, 47, 5, 41, 2, 23, 37, 2, 31, 47, 2, 29, 41, 7, 61, 11, 53, 2, 43, 19, 47, 109, 41, 97, 43, 107, 37, 113, 61, 2, 59, 107, 61, 101, 59, 97, 61, 89, 31, 127, 29, 79, 2, 67
OFFSET
1,1
COMMENTS
All terms are prime.
Conjecturally, this sequence contains infinitely many 2's.
LINKS
EXAMPLE
a(3) = A292388(1) XOR A292388(2) XOR A292388(3) = 2 XOR 1 XOR 4 = 7.
PROG
(PARI) s=0; x=0; for (n=1, 69, for (v=1, oo, if (!bit test(s, v) && is prime(bit xor(x, v)), s+=2^v; x=bit xor(x, v); print1 (x ", "); break)))
CROSSREFS
Cf. A292388.
Sequence in context: A174925 A204986 A160910 * A195306 A330421 A336052
KEYWORD
nonn,base,look
AUTHOR
Rémy Sigrist, Sep 15 2017
STATUS
approved