

A292385


a(1) = 0, a(2) = 1, and for n > 2, a(n) = 2*a(A252463(n)) + [n == 1 (mod 4)].


12



0, 1, 2, 2, 5, 4, 10, 4, 5, 10, 20, 8, 41, 20, 8, 8, 83, 10, 166, 20, 21, 40, 332, 16, 11, 82, 8, 40, 665, 16, 1330, 16, 41, 166, 16, 20, 2661, 332, 80, 40, 5323, 42, 10646, 80, 17, 664, 21292, 32, 23, 22, 164, 164, 42585, 16, 42, 80, 333, 1330, 85170, 32, 170341, 2660, 40, 32, 83, 82, 340682, 332, 665, 32, 681364, 40, 1362729, 5322, 20, 664, 33, 160
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Variant of A292381. Here the most significant 1bit is at the one step smaller position.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..2048
Index entries for sequences related to binary expansion of n


FORMULA

a(1) = 0, a(2) = 1, and for n > 2, a(n) = 2*a(A252463(n)) + [n == 1 (mod 4)], where the last part of the formula is Iverson bracket, giving 1 only if n is of the form 4k+1, and 0 otherwise.
For n >= 1, a(n) + A292383(n) = A243071(n); a(A163511(n)) = A292271(n).
For n >= 2, A004754(a(n)) = A292381(n).


PROG

(Scheme, with memoizationmacro definec)
(definec (A292385 n) (if (<= n 2) ( n 1) (+ (if (= 1 (modulo n 4)) 1 0) (* 2 (A292385 (A252463 n))))))


CROSSREFS

Cf. A004754, A163511, A243071, A252463, A292381, A292383.
Sequence in context: A276519 A034402 A278420 * A332895 A095057 A056439
Adjacent sequences: A292382 A292383 A292384 * A292386 A292387 A292388


KEYWORD

nonn,base


AUTHOR

Antti Karttunen, Sep 16 2017


STATUS

approved



