login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292383 Base-2 expansion of a(n) encodes the steps where numbers of the form 4k+3 are encountered when map x -> A252463(x) is iterated down to 1, starting from x=n. 25
0, 0, 1, 0, 2, 2, 5, 0, 0, 4, 11, 4, 22, 10, 5, 0, 44, 0, 89, 8, 8, 22, 179, 8, 0, 44, 1, 20, 358, 10, 717, 0, 20, 88, 11, 0, 1434, 178, 45, 16, 2868, 16, 5737, 44, 8, 358, 11475, 16, 0, 0, 89, 88, 22950, 2, 17, 40, 176, 716, 45901, 20, 91802, 1434, 17, 0, 40, 40, 183605, 176, 356, 22, 367211, 0, 734422, 2868, 1, 356, 22, 90, 1468845, 32, 0, 5736, 2937691, 32 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..2048

Index entries for sequences related to binary expansion of n

Index entries for sequences computed from indices in prime factorization

FORMULA

a(1) = 0; for n > 1, a(n) = 2*a(A252463(n)) + [n ≡ 3 (mod 4)], where the last part of the formula is Iverson bracket, giving 1 only if n is of the form 4k+3, and 0 otherwise.

a(n) = A292373(A292384(n)).

a(n) = A292274(A243071(n)).

Other identities. For n >= 1:

a(2n) = 2*a(n).

a(n) + A292385(n) = A243071(n).

a(A163511(n)) = A292274(n).

A000120(a(n)) = A292377(n).

EXAMPLE

For n = 3, the starting value is of the form 4k+3, after which follows A252463(3) = 2, and A252463(2) = 1, the end point of iteration, and neither 2 nor 1 is of the form 4k+3, thus a(3) = 1*(2^0) + 0*(2^1) + 0*(2^2) = 1.

For n = 5, the starting value is not of the form 4k+3, after which follows A252463(5) = 3 (which is), continuing as before as 3 -> 2 -> 1, thus a(5) = 0*(2^0) + 1*(2^1) + 0*(2^2) + 0*(2^3) = 2.

For n = 10, the starting value is not of the form 4k+3, after which follows A252463(10) = 5 (also not 4k+3), and then A252463(5) = 3 (which is), continuing as before as 3 -> 2 -> 1, thus a(10) = 0*(2^0) + + 0*(2^1) + 1*(2^2) + 0*(2^3) + 0*(2^4) = 4.

MATHEMATICA

Table[FromDigits[Reverse@ NestWhileList[Function[k, Which[k == 1, 1, EvenQ@ k, k/2, True, Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ k]], n, # > 1 &] /. k_ /; IntegerQ@ k :> If[Mod[k, 4] == 3, 1, 0], 2], {n, 84}] (* Michael De Vlieger, Sep 21 2017 *)

PROG

(PARI)

A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};

A252463(n) = if(!(n%2), n/2, A064989(n));

A292383(n) = if(1==n, 0, (if(3==(n%4), 1, 0)+(2*A292383(A252463(n)))));

(Scheme) (define (A292383 n) (A292373 (A292384 n)))

CROSSREFS

Cf. A163511, A243071, A292274, A292373, A292377, A292380, A292381, A292382, A292384, A292385.

Sequence in context: A267346 A264933 A012858 * A332896 A100247 A194123

Adjacent sequences: A292380 A292381 A292382 * A292384 A292385 A292386

KEYWORD

nonn,base

AUTHOR

Antti Karttunen, Sep 15 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 11:21 EST 2022. Contains 358700 sequences. (Running on oeis4.)