

A292354


Numbers n with a record size of the largest LucasCarmichael number that can be generated from them using an adjusted version of ErdÅ‘s's method.


0



24, 48, 60, 144, 168, 240, 360, 720, 1440, 2520, 4320, 5040, 7560, 10080, 15120, 20160
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

ErdÅ‘s showed in 1956 how to construct Carmichael numbers from a given number n (see A287840). With appropriate sign changes the method can be used to generate LucasCarmichael numbers. Given a number n, let P be the set of primes p such that (p+1)n but p is not a factor of n. Let c be a product of a subset of P with at least 3 elements. If c == 1 (mod n) then c is a LucasCarmichael number.
The corresponding largest LucasCarmichael numbers are 8855, 18095, 357599, 1010735, 406335215, 1087044101759, 4467427448759, ...


LINKS

Table of n, a(n) for n=1..16.


EXAMPLE

The set of primes for n = 24 is P={2, 3, 5, 7, 11, 23}. One subset, {5, 7, 11, 23} have c == 1 (mod n): c = 5*7*11*23 = 8855. 24 is the least number that generates LucasCarmichael numbers thus a(1)=24.


MATHEMATICA

a = {}; cmax = 0; Do[p = Select[Divisors[n]  1, PrimeQ]; pr = Times @@ p; pr = pr/GCD[n, pr]; ps = Divisors[pr]; c = 0; Do[p1 = FactorInteger[ps[[j]]][[;; , 1]]; If[Length[p1] < 3, Continue[]]; c1 = Times @@ p1; If[Mod[c1, n] == 1, c = Max[c, c1]], {j, 1, Length[ps]}]; If[c > cmax, cmax = c; AppendTo[a, n]], {n, 1, 1000}]; a


CROSSREFS

Cf. A006972, A287862, A292352.
Sequence in context: A329884 A074698 A334759 * A257861 A050497 A162282
Adjacent sequences: A292351 A292352 A292353 * A292355 A292356 A292357


KEYWORD

nonn,more


AUTHOR

Amiram Eldar, Sep 14 2017


STATUS

approved



