OFFSET
1,1
COMMENTS
Erdős showed in 1956 how to construct Carmichael numbers from a given number n (see A287840). With appropriate sign changes the method can be used to generate Lucas-Carmichael numbers. Given a number n, let P be the set of primes p such that (p+1)|n but p is not a factor of n. Let c be a product of a subset of P with at least 3 elements. If c == -1 (mod n) then c is a Lucas-Carmichael number.
The corresponding number of generated Lucas-Carmichael numbers are 1, 3, 5, 9, 21, 169, 681, 900, 1842, 7250, 29132, 77482, 932187, 4970111, 7456418.
EXAMPLE
The set of primes for n = 24 is P={2, 3, 5, 7, 11, 23}. One subset, {5, 7, 11, 23} have c == -1 (mod n): c = 5*7*11*23 = 8855. 24 is the least number that generates Lucas-Carmichael numbers thus a(1)=24.
MATHEMATICA
a = {}; cmax = 0; Do[p = Select[Divisors[n] - 1, PrimeQ]; pr = Times @@ p; pr = pr/GCD[n, pr]; ps = Divisors[pr]; c = 0; Do[p1 = FactorInteger[ps[[j]]][[;; , 1]]; If[Length[p1] < 3, Continue[]]; c1 = Times @@ p1; If[Mod[c1, n] == 1, c++], {j, 1, Length[ps]}]; If[c > cmax, cmax = c; AppendTo[a, n]], {n, 1, 1000}]; a
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Sep 14 2017
STATUS
approved