This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292310 Triangular numbers that are equidistant from two other triangular numbers. 4
 3, 21, 28, 36, 78, 105, 153, 171, 190, 210, 253, 325, 351, 378, 465, 528, 666, 703, 903, 946, 990, 1035, 1128, 1176, 1275, 1378, 1485, 1540, 1596, 1653, 1711, 1770, 1891, 1953, 2278, 2346, 2556, 2628, 2775, 2926, 3003, 3081, 3160, 3403, 3570, 3741, 3828, 4095, 4186, 4278, 4371, 4656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Triangular numbers which are the arithmetic mean of two other triangular numbers. - R. J. Mathar, Oct 01 2017 LINKS FORMULA a(n) = A292309(n)/3. EXAMPLE 3 is in the sequence because 0 = A000217(0), 6 = A000217(3), and the distances from 3 to 0 and 3 to 6 are the same. 153 is in sequence because 153 = A000217(17), 6 = A000217(2), 300 = A000217(24), and the two distances 300-153 = 153-6 = 147 are the same. MAPLE isA292310 := proc(n)     local ilow ;     if isA000217(n) then         for ilow from 0 do             tilow := A000217(ilow) ;             if tilow >= n then                 return false ;             elif isA000217(2*n-tilow) then                 return true ;             end if;         end do:     else         false;     end if; end proc: for n from 1 to 5000 do     if isA292310(n) then         printf("%d, ", n) ;     end if; end do: # R. J. Mathar, Oct 01 2017 PROG (PARI) t=3; k=2; while(t<=6000, i=k; e=0; v=t+i; while(i>0&&e==0, if(issquare(8*v+1), e=1; print1(t, ", ")); i--; v+=i); k++; t+=k) (PARI) upto(n) = {my(t = 0, i = 0, triangulars = List([0]), res = List); while(t <= n, i++; t+=i; listput(triangulars, t)); for(i=2, #triangulars, tr = triangulars[i]<<1; for(j = 1, i-1, if(issquare(8 * (tr - triangulars[j]) + 1), listput(res, triangulars[i]); next(2)))); res} \\ David A. Corneth, Oct 04 2017 CROSSREFS Cf. A000217, A292309, A292313, A292314, A292316. Sequence in context: A074217 A062219 A091103 * A045802 A006133 A317860 Adjacent sequences:  A292307 A292308 A292309 * A292311 A292312 A292313 KEYWORD nonn AUTHOR Antonio Roldán, Sep 14 2017 EXTENSIONS Term 105 added by David A. Corneth, Oct 04 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 00:33 EST 2019. Contains 330013 sequences. (Running on oeis4.)