#include <stdio.h>
#include <stdlib.h>
#include <queue>

// <-- Begin of Algorithm Implementation/Geometry/Convex hull/Monotone chain -->
// https://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain#C.2B.2B

// Implementation of Andrew's monotone chain 2D convex hull algorithm.
// Asymptotic complexity: O(n log n).
// Practical performance: 0.5-1.0 seconds for n=1000000 on a 1GHz machine.
#include <algorithm>
#include <vector>
using namespace std;

typedef long coord_t;         // coordinate type
typedef long long coord2_t;  // must be big enough to hold 2*max(|coordinate|)^2

struct Point {
	Point() : x(0), y(0), r2(0) {}
	Point(long long xx, long long yy) : x(xx), y(yy), r2(xx*xx + yy*yy) {}

	coord_t x, y;
	coord2_t r2;

	bool operator <(const Point &p) const {
		return x < p.x || (x == p.x && y < p.y);
	}
};

// 2D cross product of OA and OB vectors, i.e. z-component of their 3D cross product.
// Returns a positive value, if OAB makes a counter-clockwise turn,
// negative for clockwise turn, and zero if the points are collinear.
coord2_t cross(const Point &O, const Point &A, const Point &B)
{
	return (A.x - O.x) * (B.y - O.y) - (A.y - O.y) * (B.x - O.x);
}

// Returns a list of points on the convex hull in counter-clockwise order.
// Note: the last point in the returned list is the same as the first one.
vector<Point> convex_hull(vector<Point> P)
{
	int n = P.size(), k = 0;
	if (n == 1) return P;
	vector<Point> H(2*n);

	// Sort points lexicographically
	sort(P.begin(), P.end());

	// Build lower hull
	for (int i = 0; i < n; ++i) {
		while (k >= 2 && cross(H[k-2], H[k-1], P[i]) <= 0) k--;
		H[k++] = P[i];
	}

	// Build upper hull
	for (int i = n-2, t = k+1; i >= 0; i--) {
		while (k >= t && cross(H[k-2], H[k-1], P[i]) <= 0) k--;
		H[k++] = P[i];
	}

	H.resize(k-1);
	return H;
}

// <-- End of Algorithm Implementation/Geometry/Convex hull/Monotone chain -->

#define MAX 10000

struct QueueCompare {
	bool operator()(const Point& lhs, const Point& rhs) const {
		return lhs.r2 > rhs.r2;
	}
};

int main() {
	vector<Point> hull;

	// lattice points
	priority_queue<Point, vector<Point>, QueueCompare> queue;
	for (int x=0; x<=MAX+1; x++) {
		queue.push(Point(x, 0));
	}

	for (int n=0; n<=MAX; n++) {
		while (queue.top().r2 <= n*n) {
			Point p = queue.top();
			queue.pop();

			hull.push_back(p);

			queue.push(Point(p.x, p.y+1));
		}

		hull = convex_hull(hull);

		if (n==0) {
			// special case
			printf("%d %d\n", n, hull.size());
		} else {
			printf("%d %d\n", n, (hull.size()-2) * 4);
		}
		fflush(stdout);
	}

	return 0;
}