

A292266


Restricted growth sequence transform of A292265; a filter related to Shevelev's algorithm for computing A002326.


4



1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 12, 10, 13, 14, 15, 16, 17, 16, 18, 19, 16, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 24, 34, 35, 36, 37, 38, 39, 11, 16, 6, 40, 41, 42, 43, 44, 7, 45, 46, 47, 48, 49, 50, 51, 52, 53, 43, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 57, 76, 77, 78, 79, 80, 81
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

For all i, j: a(i) = a(j) => A002326(i) = A002326(j).


LINKS

Antti Karttunen, Table of n, a(n) for n = 0..32768


PROG

(PARI)
allocatemem(2^30);
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
write_to_bfile(start_offset, vec, bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)1, " ", vec[n])); }
A000265(n) = (n >> valuation(n, 2));
A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
A292265(n) = { my(x = n+n+1, z = A019565(valuation(1+x, 2)), m = A000265(1+x)); while(m!=1, z *= A019565(valuation(x+m, 2)); m = A000265(x+m)); z; };
write_to_bfile(0, rgs_transform(vector(32769, n, A292265(n1))), "b292266_upto32768.txt");


CROSSREFS

Cf. A002326, A292239, A292265.
Sequence in context: A319716 A319707 A319717 * A292267 A305810 A171060
Adjacent sequences: A292263 A292264 A292265 * A292267 A292268 A292269


KEYWORD

nonn


AUTHOR

Antti Karttunen, Oct 02 2017


STATUS

approved



