%I #10 Sep 12 2017 20:38:10
%S 0,0,1,0,0,0,1,0,0,0,0,0,2,0,2,0,0,0,1,0,0,0,1,0,0,0,2,0,0,0,0,0,1,0,
%T 1,0,1,0,0,0,0,0,1,0,0,0,3,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,2,0,
%U 0,0,0,0,0,0,1,0,2,0,1,0,0,0,2,0,0,0,1,0,0,0,0,0,1,0,4,0,1,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0
%N The 3-adic valuation of A048673(n).
%H Antti Karttunen, <a href="/A292251/b292251.txt">Table of n, a(n) for n = 1..16384</a>
%F a(n) = A007814(1+A292250(n)).
%F a(n) = A007949(A048673(n)).
%F a(n) = A007949(3*A048673(n)) - 1.
%F a(n) = A292252(2n)-1.
%t IntegerExponent[#, 3] & /@ Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n, {n, 120}] (* _Michael De Vlieger_, Sep 12 2017 *)
%Y One less than the even bisection of A292252.
%Y Cf. A007814, A007949, A048673, A292250.
%Y Cf. also A292241, A292261.
%K nonn
%O 1,13
%A _Antti Karttunen_, Sep 12 2017