login
The 3-adic valuation of A048673(n).
15

%I #10 Sep 12 2017 20:38:10

%S 0,0,1,0,0,0,1,0,0,0,0,0,2,0,2,0,0,0,1,0,0,0,1,0,0,0,2,0,0,0,0,0,1,0,

%T 1,0,1,0,0,0,0,0,1,0,0,0,3,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,2,0,

%U 0,0,0,0,0,0,1,0,2,0,1,0,0,0,2,0,0,0,1,0,0,0,0,0,1,0,4,0,1,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0

%N The 3-adic valuation of A048673(n).

%H Antti Karttunen, <a href="/A292251/b292251.txt">Table of n, a(n) for n = 1..16384</a>

%F a(n) = A007814(1+A292250(n)).

%F a(n) = A007949(A048673(n)).

%F a(n) = A007949(3*A048673(n)) - 1.

%F a(n) = A292252(2n)-1.

%t IntegerExponent[#, 3] & /@ Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n, {n, 120}] (* _Michael De Vlieger_, Sep 12 2017 *)

%Y One less than the even bisection of A292252.

%Y Cf. A007814, A007949, A048673, A292250.

%Y Cf. also A292241, A292261.

%K nonn

%O 1,13

%A _Antti Karttunen_, Sep 12 2017