login
Expansion of the exponential generating function (1/2)*(1 + 4*x)*(1 - (1 + 4*x)^(-1/2))/x.
3

%I #15 Aug 01 2021 12:59:52

%S 1,1,-4,30,-336,5040,-95040,2162160,-57657600,1764322560,-60949324800,

%T 2346549004800,-99638080819200,4626053752320000,-233153109116928000,

%U 12677700308232960000,-739781100339240960000,46113021921146019840000,-3058021453718104473600000

%N Expansion of the exponential generating function (1/2)*(1 + 4*x)*(1 - (1 + 4*x)^(-1/2))/x.

%C This gives one half of the z-sequence entries for the generalized unsigned Lah number Sheffer matrix Lah[4,1] = A048854.

%C For Sheffer a- and z-sequences see a W. Lang link under A006232 with the references for the Riordan case, and also the present link for a proof.

%H Robert Israel, <a href="/A292220/b292220.txt">Table of n, a(n) for n = 0..366</a>

%H Wolfdieter Lang, <a href="/A290597/a290597.log.txt">Note on a- and z-sequences of Sheffer number triangles for certain generalized Lah numbers.</a>

%F a(n) = [x^n/n!] (1/2)*(1 + 4*x)*(1 - (1 + 4*x)^(-1/2))/x.

%F a(0) = 1, a(n) = -(-2)^n*Product_{j=1..n} (2*j - 1)/(n+1) = -((-2)^n/(n+1))*A001147(n), n >= 1.

%F a(n) ~ -(-1)^n * n^(n-1) * 2^(2*n + 1/2) / exp(n). - _Vaclav Kotesovec_, Sep 18 2017

%F a(n+1) = -2*(1 + 2*n)*(1 + n)*a(n)/(2 + n) for n >= 1. - _Robert Israel_, May 10 2020

%e The sequence z(4,1;n) = 2*a(n) begins: {2,2,-8,60,-672,10080,-190080,4324320,-115315200,3528645120,-121898649600,...}.

%p f:= gfun:-rectoproc({a(n+1) = -2*(1 + 2*n)*(1 + n)*a(n)/(2 + n),a(0)=1,a(1)=1},a(n),remember):

%p map(f, [$0..30]); # _Robert Israel_, May 10 2020

%t With[{nn=20},CoefficientList[Series[1/2 (1+4x) (1-(1+4x)^(-1/2))/x,{x,0,nn}],x] Range[ 0,nn]!] (* _Harvey P. Dale_, Aug 01 2021 *)

%Y Cf. A001147, A006232 (link), A048854, A292221 (z[4,3]/2).

%K sign,easy

%O 0,3

%A _Wolfdieter Lang_, Sep 13 2017