The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292136 G.f.: Re(1/(i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1). 5
 1, 0, -1, -1, -1, -1, -2, -1, 0, 0, 0, 1, 2, 3, 3, 4, 6, 6, 5, 6, 7, 6, 5, 5, 5, 3, 0, -2, -3, -6, -11, -13, -14, -19, -24, -27, -29, -33, -38, -40, -40, -43, -47, -46, -43, -43, -43, -38, -30, -26, -22, -12, 1, 11, 20, 36, 56, 71, 85, 106, 130, 149, 166, 190, 217 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, q-Pochhammer Symbol. FORMULA 1/( i*x; x)_inf is the g.f. for a(n) + i*A292137(n). 1/(-i*x; x)_inf is the g.f. for a(n) + i*A292138(n). From Peter Bala, Jan 19 2021: (Start) a(n) = Sum (-1)^k, where the sum is over all integer partitions of n into an even number of parts and 2*k is the number of parts in a partition. An example is given below. G.f.: Sum_{n >= 0} (-1)^n * x^(2*n)/Product_{k = 1..2*n} (1 - x^k). (End) EXAMPLE Product_{k>=1} 1/(1 - i*x^k) = 1 + (0+1i)*x + (-1+1i)*x^2 + (-1+0i)*x^3 + (-1+0i)*x^4 + (-1+0i)*x^5 + (-2-1i)*x^6 + (-1-2i)*x^7 + ... Product_{k>=1} 1/(1 + i*x^k) = 1 + (0-1i)*x + (-1-1i)*x^2 + (-1+0i)*x^3 + (-1+0i)*x^4 + (-1+0i)*x^5 + (-2+1i)*x^6 + (-1+2i)*x^7 + ... From Peter Bala, Jan 19 2021: (Start) The number of partitions of n = 13 into an even number of parts is: # parts (2*k)   2    4    6   8   10   12 # partitions    6   18   14   7    3    1 Hence a(13) = Sum (-1)^k = -6 + 18 - 14 + 7 - 3 + 1 = 3. (End) MAPLE N:= 100: S := convert(series( add( (-1)^n*x^(2*n)/(mul(1 - x^k, k = 1..2*n)), n = 0..N ), x, N+1 ), polynom): seq(coeff(S, x, n), n = 0..N); # Peter Bala, Jan 15 2021 MATHEMATICA Re[CoefficientList[Series[1/QPochhammer[I*x, x], {x, 0, 100}], x]] (* Vaclav Kotesovec, Sep 17 2017 *) CROSSREFS Cf. A292042, A292043, A292137, A292138. Sequence in context: A035172 A110174 A022909 * A032239 A057094 A284938 Adjacent sequences:  A292133 A292134 A292135 * A292137 A292138 A292139 KEYWORD sign,look AUTHOR Seiichi Manyama, Sep 09 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 18:58 EDT 2021. Contains 342932 sequences. (Running on oeis4.)