login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292086 Number T(n,k) of (unlabeled) rooted trees with n leaf nodes and without unary nodes such that k is the maximum of 1 and the node outdegrees; triangle T(n,k), n>=1, 1<=k<=n, read by rows. 12
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 2, 1, 0, 6, 17, 7, 2, 1, 0, 11, 47, 22, 7, 2, 1, 0, 23, 133, 72, 23, 7, 2, 1, 0, 46, 380, 230, 77, 23, 7, 2, 1, 0, 98, 1096, 751, 256, 78, 23, 7, 2, 1, 0, 207, 3186, 2442, 861, 261, 78, 23, 7, 2, 1, 0, 451, 9351, 8006, 2897, 887, 262, 78, 23, 7, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

Index entries for sequences related to rooted trees

FORMULA

T(n,k) = A292085(n,k) - A292085(n,k-1) for k>2, T(n,1) = A292085(n,1).

EXAMPLE

:   T(4,2) = 2        :   T(4,3) = 2      : T(4,4) = 1 :

:                     :                   :            :

:       o       o     :      o       o    :     o      :

:      / \     / \    :     / \     /|\   :   /( )\    :

:     o   N   o   o   :    o   N   o N N  :  N N N N   :

:    / \     ( ) ( )  :   /|\     ( )     :            :

:   o   N    N N N N  :  N N N    N N     :            :

:  ( )                :                   :            :

:  N N                :                   :            :

:                     :                   :            :

Triangle T(n,k) begins:

  1;

  0,  1;

  0,  1,   1;

  0,  2,   2,   1;

  0,  3,   6,   2,  1;

  0,  6,  17,   7,  2,  1;

  0, 11,  47,  22,  7,  2, 1;

  0, 23, 133,  72, 23,  7, 2, 1;

  0, 46, 380, 230, 77, 23, 7, 2, 1;

MAPLE

b:= proc(n, i, v, k) option remember; `if`(n=0,

      `if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0,

      `if`(v=n, 1, add(binomial(A(i, k)+j-1, j)*

       b(n-i*j, i-1, v-j, k), j=0..min(n/i, v)))))

    end:

A:= proc(n, k) option remember; `if`(n<2, n,

      add(b(n, n+1-j, j, k), j=2..min(n, k)))

    end:

T:= (n, k)-> A(n, k)-`if`(k=1, 0, A(n, k-1)):

seq(seq(T(n, k), k=1..n), n=1..15);

MATHEMATICA

b[n_, i_, v_, k_] := b[n, i, v, k] = If[n == 0, If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, If[v == n, 1, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, v - j, k], {j, 0, Min[n/i, v]}]]]];

A[n_, k_] := A[n, k] = If[n < 2, n, Sum[b[n, n + 1 - j, j, k], {j, 2, Min[n, k]}]];

T[n_, k_] := A[n, k] - If[k == 1, 0, A[n, k - 1]];

Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-Fran├žois Alcover, Nov 07 2017, after Alois P. Heinz *)

CROSSREFS

Columns k=1-10 give: A063524, A001190 (for n>1), A292229, A292230, A292231, A292232, A292233, A292234, A292235, A292236.

Row sums give A000669.

Limit of reversed rows gives A292087.

Cf. A244372, A288942, A292085.

Sequence in context: A107424 A155161 A185937 * A065177 A064044 A213980

Adjacent sequences:  A292083 A292084 A292085 * A292087 A292088 A292089

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Sep 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 00:32 EST 2019. Contains 329871 sequences. (Running on oeis4.)