login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292024 a(n) is the smallest k such that n divides psi(k!) (k > 0). 1
1, 3, 2, 3, 10, 3, 13, 4, 5, 10, 22, 3, 26, 13, 10, 4, 34, 5, 37, 10, 13, 22, 46, 4, 15, 26, 6, 13, 58, 10, 61, 5, 22, 34, 13, 5, 73, 37, 26, 10, 82, 13, 86, 22, 10, 46, 94, 4, 14, 15, 34, 26, 106, 6, 22, 13, 37, 58, 118, 10, 122, 61, 13, 6, 26, 22, 134, 34, 46, 13, 142, 5, 146, 73, 15, 37, 22, 26, 157 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Robert Israel, Sep 14 2017: (Start)

If m and n are coprime then a(m*n) = max(a(m),a(n)).

a(n) <= 2n.

Suppose p is a prime >= 5.  Then

  a(p) = 2p-1 if p is in A005382, otherwise 2p.

  a(p^2) = 2p if p is in A005382, otherwise 3p.

  a(p^3) = 3p if p is in A005382, 4p-1 if p is in A062737, otherwise 4p.

(End)

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

EXAMPLE

a(4) = 3 because 4 divides psi(3!) = 12 and 3 is the least number with this property.

MAPLE

A:= proc(n) option remember;

    local F, p, e, t, k;

    F:= ifactors(n)[2];

    if nops(F)=1 then

      p:= F[1][1];

      e:= F[1][2];

      if p = 3 then

        t:= 1; if e =1 then return 2 fi

      else t:= 0:

      fi;

      for k from 2*p by p do

        if isprime(k-1) then

          t:= t+padic:-ordp(k, p);

          if t >= e then return(k-1) fi;

        fi;

        t:= t + padic:-ordp(k, p);

        if t >= e then return k fi;

      od

    else

      max(seq(procname(t[1]^t[2]), t=F))

    fi

end proc:

A(1):= 1:

map(A, [$1..100]); # Robert Israel, Sep 14 2017

PROG

(PARI) a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));

a(n) = {my(k=1); while(a001615(k!) % n, k++); k; } \\ after Charles R Greathouse IV at A001615

CROSSREFS

Cf. A001615, A005382, A062737, A275985.

Sequence in context: A010605 A120879 A118064 * A290093 A186102 A170848

Adjacent sequences:  A292021 A292022 A292023 * A292025 A292026 A292027

KEYWORD

nonn,look

AUTHOR

Altug Alkan, Sep 07 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 17 04:09 EST 2017. Contains 296096 sequences.