%I #6 Mar 04 2024 00:10:49
%S 12,48,132,288,540,912,1428,2112,2988,4080,5412,7008,8892,11088,13620,
%T 16512,19788,23472,27588,32160,37212,42768,48852,55488,62700,70512,
%U 78948,88032,97788,108240,119412,131328,144012,157488,171780,186912,202908,219792,237588
%N a(n) = 4n(n^2+2).
%C For n > 1, Wiener index of the 2n-crossed prism graph.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CrossedPrismGraph.html">Crossed Prism Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WienerIndex.html">Wiener Index</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1).
%F a(n) = 4*n*(n^2 + 2).
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
%F G.f.: (12 x (1 + x^2))/(-1 + x)^4.
%t Table[4 n (n^2 + 2), {n, 50}]
%t LinearRecurrence[{4, -6, 4, -1}, {12, 48, 132, 288}, 20]
%t CoefficientList[Series[(12 (1 + x^2))/(-1 + x)^4, {x, 0, 20}], x]
%K nonn,easy
%O 1,1
%A _Eric W. Weisstein_, Sep 07 2017