login
A291988
Expansion of 1/((1-x)*(1-2*x^2)*(1-3*x^3)*(1-4*x^4)*(1-5*x^5)).
3
1, 1, 3, 6, 14, 25, 50, 84, 165, 280, 503, 826, 1477, 2386, 4067, 6625, 11032, 17605, 29039, 45820, 74708, 117410, 187691, 293155, 467733, 724421, 1140157, 1763581, 2758717, 4238285, 6599926, 10082054, 15609032, 23819315, 36607147, 55644926, 85380815, 129185681
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,2,1,1,-5,-7,-14,7,19,26,10,20,-60,-120,120).
FORMULA
a(n) = a(n-1) + 2*a(n-2) + a(n-3) + a(n-4) - 5*a(n-5) - 7*a(n-6) - 14*a(n-7) + 7*a(n-8) + 19*a(n-9) + 26*a(n-10) + 10*a(n-11) + 20*a(n-12) - 60*a(n-13) - 120*a(n-14) + 120*a(n-15) for n >= 16. - Muniru A Asiru, Sep 07 2017
MATHEMATICA
CoefficientList[Series[1/Times@@Table[1-n x^n, {n, 5}], {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 2, 1, 1, -5, -7, -14, 7, 19, 26, 10, 20, -60, -120, 120}, {1, 1, 3, 6, 14, 25, 50, 84, 165, 280, 503, 826, 1477, 2386, 4067}, 40] (* Harvey P. Dale, Aug 10 2021 *)
PROG
(PARI) Vec(1/((1-x)*(1-2*x^2)*(1-3*x^3)*(1-4*x^4)*(1-5*x^5)) + O(x^100))
(GAP)
a:=[1, 1, 3, 6, 14, 25, 50, 84, 165, 280, 503, 826, 1477, 2386, 4067];;
for n in [16..10^2] do a[n]:=a[n-1]+2*a[n-2]+a[n-3]+a[n-4]-5*a[n-5]-7*a[n-6]-14*a[n-7]+7*a[n-8]+19*a[n-9]+26*a[n-10]+10*a[n-11]+20*a[n-12]-60*a[n-13]-120*a[n-14]+120*a[n-15]; od; a; # Muniru A Asiru, Sep 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 07 2017
STATUS
approved