login
A291931
Primitive elements of A290002.
1
1, 10, 18, 54, 70, 78, 110, 162, 174, 198, 222, 230, 234, 246, 294, 414, 426, 438, 450, 470, 486, 534, 594, 666, 702, 770, 846, 858, 882, 910, 1070, 1158, 1218, 1242, 1314, 1350, 1458, 1610, 1722, 1782, 1794, 1866, 1914, 1926, 1938, 1950, 1998, 2058, 2106, 2250, 2442, 2530, 2538, 2574, 2590, 2646, 2886
OFFSET
1,2
COMMENTS
Members k of A290002 such that k/2 is not in A290002.
Includes all members of A025192 except 2 and 6.
LINKS
EXAMPLE
a(3) = 18 is in the sequence because psi(phi(18)) = phi(psi(18)) = 12 but psi(phi(9)) = 12 <> 4 = phi(psi(9)).
MAPLE
psi:= proc(n) n*mul((1+1/i[1]), i=ifactors(n)[2]) end:
A290002:= select(psi @ numtheory:-phi = numtheory:-phi @ psi, {$1..3000}):
sort(convert(A290002 minus map(`*`, A290002, 2), list));
MATHEMATICA
f[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors@ n}]; With[{s = Select[Range[3000], f[EulerPhi@ #] == EulerPhi[f@ #] &]}, Select[s, FreeQ[s, #/2] &]] (* Michael De Vlieger, Sep 06 2017 *)
CROSSREFS
Sequence in context: A301326 A350317 A255603 * A050576 A144376 A266708
KEYWORD
nonn
AUTHOR
Robert Israel, Sep 06 2017
STATUS
approved